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The theory of spectral methods for time dependent partial equati‘ms is
v

L’ 1) Spectral methods for time dependent partial differential equations. )

reviewed. When the domain is periodic, Fourier methods are }(;esented

while for nonperiodic problems both Chebyshev and Legend’,Athods are
-

discussed. The theory 1is presented for both hypg/rbﬁiic and parabolic

systems using both Galerkin and collocation procéci(sres. While most of the

review considers problems with gonst'é’iic coefficients, the extension to

-

o

nonlinear problew/’discussed. Some results for problems with
e

sho aré presented. (See Appendix 1)

2) Spectral methods for compressible flow problems. _ / o U

J

In this article we reviéw recent results concerning numerical simulation
of shock waves using spectral metht;ds. We discuss shock fitting
techniques as well as shock capturing techniques with finite difference
artificial viscosity. We also discuss the notion of the information

contained in the numerical results obtained by spectral methods and show

how this information can be recovered. (See Appendix 2)




Recovering pointwise values of discontinuous data within spectral
accuracy.

J

We show How pointwise values of a function, £(x), can be accurately

recovereﬂ/either from its spectral or pseudospectral approximations, so
that the accuracy solely depends on the local smoothness of f in the
/
neigyborhood of the point X Most notably, given the equidistant
‘/

fuoction grid values, its intermediate point values are recovered within

sﬁectral accuracy, despite the possible presence of discontinuities

 scattered in the domain. (Recall that the usual spectral convergence rate

decelerates otherwise to first order, throughout.)

To this end we employ a highly oscillatory smoothing kernel in
contrast to the more standard positive unit-mass mollifers.

In particular, post-processing of a stable Fourier method applied to
hyperbolic equations with discontinuous data recovers the exact solution
modulo a spectrally small error. Numerical examples are preseanted. (See

Appendix 3)

Information content in spectral calculations. - ) -
!

Spectral solutions of hyperbolic partial differential equations induce a
Gibbs phenomenon near local discontinuities or strong gradients.

A procedure is presented for extracting the piecewise smooth behavior
of the solution out of the oscillatory numerical solution data. The
procedure 1is developed from the theory of 1linear partial differential
equations., Its application to a non-linear system (the two-dimensional

Euler equations of gas dynamics) is shown to be efficacious for the

particular situation. (See Appendix 4)
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st S5) Spectral methods for discontinuous problenms. >~

s | )
s We show that spectral methods yield high-order accuracy .even when applied

X to problems with discontinuities, though 96: in the sense of pointwise
» S

accuracy. Two different procedures_aré"ﬁresented which recover pointwise

//
§ accurate approximationsrfIOl"thé spectral calculations. (See Appendix 5)
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b 6) Stability and Lyapunov stability of dynamical systems: a differential

approach and a numerical method. /5, A
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& A set of differential equations for the eigenvalues and eigenvectors of
the stability matrix of a dynamical system, as well as for the Lyapunov
exponents and the corresponding eigenvectors 1s derived. The rate of
N convergence of the Lyapunov eigenvectors is shown to be exponential. The

eigenvectors of the stability matrix can be grouped into sets, each

:k spanning a subspace which converges at an exponential rate. It is
% demonstrated that, generically, the real parts of the eigenvalues of the
:’ stability matrix equal the corresponding Lyapunov exponents. This
‘4 statement has been tesged nunericallyf | The values of the Lyapunov
a exponents, My, are shown to be related to the corresponding finite time
;‘ values of the Lyapunov exponents (e.g. those deduced from a finite time
. b, + Ei(t)

) numerical simulation), ,ui(t), by: ui(t) =uyt —_— - The
%I . b;“s are constants and Ei(t) are "noise" terms of zero mean. This

observation leads to a . ,method of extrapolation, which has been used to
predict Lyapunov exponents from a finite amount of data. It is shown that
ia the use of the standard (numerical) methods to compute Lyapunov exponents

e a
introduces an error ?1 in the value of "1(t)’ where the ai's are
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constants. Thus the standard method has a rate of convergence which is
the same as that of the exact ui(t)’s. Finally, we have shown how one
can compute the eigenvectors associated with each of Ehe eigenvalues of
the stability matrix as well as the Lyapunov eigenvectors. (See Appendix
6)

7) Boundary conditions for incompressible flows. e e—

In this paper, we have analyzed the effect of boundary conditions on
incompressible flows. We have explained and analyzed a numerical boundary
layer of thickness /vat that appears in many formulations of
incompressible flow problems and we have explained techniques for the
development of high-order methods.

For first- or second-order methods, we recommend the use of splitting
methods in the form (4.1) - (4.5) or (7.1) - (7.5) with the tangential-
derivative boundary conditions (7.16) or the modified velocity boundary
conditions (7.28). To achieve higher-order accuracy, we may employ either
the extrapolation methods outlined in Sec. 6 or, perhaps even better, we
may use schemes of the form (1.11) with high-order pressure boundary
conditions of the form (7.23) or iterative conditions of the form (7.25)
[{with only a few iteratipns per time step].

In this paper, we have shown that we can characterize methods for the
solution of incompressible flow problems as belonging to either parabolic
or elliptic type with regard to the determination of the pressure field.
The elliptic schemes typically have smaller errors in the divergence

field, with the errors decaying exponentially away from the boundaries of
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. the computational domain. On the other hand, the parabolic schemes have

smooth solutions, without numerical boundary layers, but care should be
‘. exercised with respect to the boundary conditions in btder tha initial
' divergence errors be eliminated. This analysis explains why “elliptic”

schemes, like that introduced by Harlow & Welch (1965) have been found to

- a g

be more accurate than parabolic schemes.

We have also shown, using Weyl“s lemma for the decomposition of a

SR,

flow into its solenoidal and irrotational components, that it is possible
to derive accurate boundary conditions for the pressure that involve only

the tangential derivative of the boundary vorticity. This form of the

W

boundary condition tends to minimize the effects of numerical boundary

A
layers induced by splitting methods. (See Appendix 7)
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